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Onereasonfor investigatingLightning DetectionAnd Ranging(LDAR) is to validatedata
from the Optical TransientDetector(OTD). A Time-Of-Arrival (TOA) proceduremay be used
with radiowaveportionsof lightningsignatures.An antennanetworkis in placeat KSC [1].

Algorithms areavailable [2,3] which providethe advantagesof considerablysimplifying
the numericalestimationof sourcelocationanda clearerroranalysis.Thesealgorithmsinvolve
judicious differencingof measurementdatawhichallows informationretrievalby performinga
linear inversion. Other algorithms [4,5] require numerically finding intersections of
hyperboloids.Suchalgorithmsaremore involvedcomputationally,andthe erroranalysisis not
straightforward.Thealgorithmin [3] providesfor aclearlydefinederroranalysisasgivenin [6].

Efficiency in the retrieval of lightning location dependson the configuration of the
antennas.Certaincombinationsof sourcelocationsandantennaconfigurationswill result in the
matrix of the linearsystemobtainedusingthe algorithm in [3] havingsmall eigenvalues.This
will leadto a magnificationof error.For example,a systemof 4 antennasnumberedfrom 1to 4
sequentiallyaroundthe perimeterof a rectangleyieldseigenvalueswhich areproportionalto tl2

+ t34 = tl - t2 + t3 - t4, where (/is the time of arrival of a signal from the lightning event to thej th

antenna. Letting Rj denote the distance from the source to the j th antenna and c be the speed of

light,

tj = R j/c. (1)

Curved transit paths due to refractive effects in the atmosphere are not considered. For brevity,

cable time delays have been neglected. Source locations on either of the 2 planes which are

perpendicular to the plane of the rectangle and bisect any line segment connecting 2

consecutively numbered antennas yield tl2 + /34 = 0. Such a configuration is "blind" to any

sources on these planes.

A better configuration places antennas at the centroid and vertices of an equilateral triangle.

The antenna at the centroid will be designated by the index 1; others are numbered 2 through 4.

This configuration has been referred to as "ideal" in [7]. The eigenvalues for this configuration

are proportional to fi2 + t13 + tin. This is equivalent to saying that the configuration is ineffective

when the distance from the source to the antenna at the centroid is equal to the average of the

distances from the source to the other 3 antennas. It turns out that this is never the case. The

question of suitability of this particular arrangement of 4 coplanar antennas has been reduced to a

problem in geometry. This report presents a solution.

The desired result is obtained by seeking the extrema of the sum of distances from the

vertices to a point on a hemisphere of radius R centered at the centroid of the triangle. Full

generality is recovered by allowing R to be arbitrary. We set up a Cartesian coordinate system,

with points specified by (x, y, z). Its origin is at the centroid. Vertices are located at

D2=D_, D3=-D i+_ , D4=D i _ ;
(2)

the distance from the centroid to a vertex is D. For the present, assume R >_ D. It will be

convenient to consider the distances from the vertices on an orthogonal coordinate system.
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Vectorsfrom antennas1through4 to the source will be denoted by R, X, Y, Z respectively. Let

0 denote the angle between 1) 2 and R. Employing the law of cosines, it may be shown that

It will be necessary to extremize

subject to (3).

3R 2 =X 2 + y2 +Z 2 _3D 2.

F(X,Y,Z)= X + Y + Z

(3)

(4)

Using Lagrange multipliers or any other suitable method, the only extremum in the first

octant is X = Y = Z = _/R 2 + D 2 ; F = 3_/R 2 + D 2 > 3R. This turns out to be a local maximum.

Minima must be found by looking along boundaries. These are not necessarily in any coordinate

plane. All of X, Y, Z must be greater than or equal to R - D. Eliminating Z reduces the problem;

must be minimized requiring that none of X, Y, Z be negative. An additional constraint is

obtained from (3),

X

X 2 + y2 _<2(R 2 +D 2 + RD).

i .r
3(R 2 + D 2) p ::

o
..................... t .............

'¢ I

q_ +D_ + RD ._-

_ ,,/2(_ +D 2 + _)----_:

(6)

Fig. 1

This constraint does not sufficiently limit f, X and Y cannot both attain their minimum values of

R - D at the same time. Boundaries are shown in Fig. 1. The smallest values of Y for a fixed X
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occur when z -- 0 (the lightning event is in the plane of the triangle). This may be demonstrated

by writing

y2 = R 2 + D 2 _ 2R. D 3. (7)

Elevating the lightning event from the plane of the triangle while keeping X and R constant is

equivalent to rotating X and R about D 2. Here, D 3 has no z component and y is constant. The

value of Y is minimized when x is as small as possible (at z -- 0).

The slope of a tangent to POQ is given by

dY sin(2er/3 - 0) X

dX

It is never positive and goes from

(R- D, 4R2+ D2+ RD). At the point O, X

this point are X = Y = x/R 2 + D 2 - RD.

The gradient

Vf(X, Y) = (1 - X/Z)X + (1 - Y/Z) "Y

sin0 Y" (8)

O at (x/R2+D2+RD, R-D)to- oo at

= Y, 0 = _/3, and dY/dX = -1. The coordinates of

(9)

points in the direction of greatest increase off The region in Fig. 1 can be thought of as a

mountain with its summit at X--Y--x/R 2 + D 2 (the point labeled S). On the square region

0_< X _ _/R z + D 2 , 0_ Y_< x/R 2 + D 2 , we have Z >_Xand Z _>Y. Except at S, the inequality is

strict. The gradient points up and to the right. Below the line segment

OS, n'/3 _ 0_< 2_r/3, and X > Y. The opposite is true above OS. The mountain has a ridge along

this line segment. Below and to the left of S, it is clear that as X and Y decrease, Z increases (the

components of the gradient remain positive). Values of f beneath or to the left of POQ are

smaller than values on this curve.

It will not be necessary to investigate the values off along PT or QT. These curves can be

mapped onto POQ by a suitable relabeling of X, Y, Z. Symmetry may be further exploited to

reduce the effort. An interchange of X and Y will map OP and OQ onto each other.

It turns out to be difficult to parameterize Y in terms of X and obtain the minima along the

bounding curve by differentiation. We will bound the values off along OQ by those on a

simpler polygonal boundary below OQ.

We begin at Y = R - D and require

f(X, R- D) = X +(R- D)+ Z(X, R- D) >_3R. (10)

This leads to the inequalities

XLV-3



2X 2-2(2R+D)X+2R 2-D 2+2RD<O, R "[3-1D<_X<R+'f3+ID-- . (11)
2 2

The largest value of Xthat needs to be considered is _]R 2 + D 2 + RD. Extrema along this line

segment, denoted by QB (see Fig. 2), must be at the endpoints;

f(4R 2 + D 2 + RD, R- D]= R- D + 24R 2 + D 2 + RD > 3R,
\ ! (12)

0 /2,
The next portion of the bounding curve is drawn by leaving X = R-(.f3- 1)D/2 and

increasing Y to some point below OQ. The location of this point may be found by solving for

cos0 in X 2 = R 2 + D 2 - 2RDcosO. We find that

._fi-1 ,[3D
COS 0 -- + ,

2 4 R

cos(__- 0)= ____ /1. [ L-1 ,_tfJD] 2 1 [,f3-1 .4t-3D -2 _ + 4R J -2 + _-

3 3/4 _ - 1 2
< <
- 2 3/2 4 3 "

(13)

Using the law of cosines to write y2 in terms of R, D, and cos(2n'/3 - 0), we see that r decreases

as cos(2_/3- 0) increases. The smallest value of Y on POQ for X=R-(_/-3-1)D/2 is

bounded using (13);

Y> ,JR 2 + D _ -4RD/3 > R- 2D/3. (14)

We can proceed up to point C whose coordinates are (R- (,f3- 1)D/2, R-2D/3).

As for the first part of the polygonal bounding curve, the extrema are at the endpoints. The

minimum value off along BC is 3R and occurs at B. The maximum is located at C and is given

by

2R- [(_/-3- 1)/2+ 2/3]D + _R2+ (14/9+ ,f3/2)D 2 + (_/3 + 1/3)RD> 3R. (15)

Proceeding as before, we fix Y = R - 219/3 and see how far to the left we can go and still

havef > 3R. This time we obtain the inequalities

R _f-_/2-1D<X<R+'f_/2+ID. (16)
3 3

It will not be necessary to proceed from C all the way to the value indicated in (16). We can stop

at a point E which has the same X-coordinate as O. From the estimate
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/ 1R _/-_/2 < (R - 0.7D) 2 < R 2 + D 2 - RD,
3

(17)

we see thatflX, Y) > 3R at every point of this portion of the boundary.

Finally, we proceed vertically from E to O. The derivative off with respect to Y is positive

everywhere along this line segment. The smallest value off here is at E.

Y

ip O

"" B

X

Fig. 2

Due to the relative positions of the actual and polygonal boundaries and the topography of

the surface, the inequality is strict; X + Y + Z > 3R. When R > 0, the result for the case R _<D

may be inferred by interchanging R and D in the preceding calculations and showing X + Y + Z >

3D > 3R. The case R = 0 is immediate.
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